02

CLASSIFICATION CHANGED

UNCLASSIFIED

RESEARCH MEMORANDUM

AN INVESTIGATION OF THE CONTROL EFFECTIVENESS OF TIP AILERONS AND SPOILERS ON A LOW-ASPECT-RATIO TRAPEZOIDAL-WING AIRPLANE MODEL AT

MACH NUMBERS FROM 1.55 TO 2.35

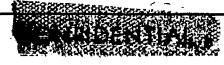
By Norman D. Wong

Ames Aeronautical Laboratory Moffett Field, Calif.

LIBRARY COPY

DEC 12 1957

LANGLEY AERONAUTICAL LABORATOR! LIBRARY, NACA LANGLEY FILL D. VIRGINIA


CLASSIFIED DOCUMENT

This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revolution of which in any manner to an anauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

December 12, 1957

UNCLASSIFIED

RESEARCH MEMORANDUM

NATIONAL ADVISORY COMMITTEE FOR A

AN INVESTIGATION OF THE CONTROL EFFECTIVENESS OF TIP AILERONS AND SPOILERS ON A LOW-ASPECT-RATIO TRAPEZOIDAL-WING AIRPLANE MODEL AT MACH NUMBERS FROM 1.55 TO 2.35

By Norman D. Wong

SUMMARY

A wind-tunnel investigation has been made of three types of lateral control devices on a low-aspect-ratio trapezoidal wing. Tip ailerons, a plain spoiler, and a vented spoiler were investigated to ascertain the relative characteristics of each system. The tests were conducted at Mach numbers of 1.55, 1.90, and 2.35 and at a Reynolds number of approximately 1.4x106.

The results indicated the superiority in roll power of the tip ailerons over the plain and vented spoilers. With tip ailerons alone. the roll capability was adequate to satisfy the military specification requirement. At 25 deflection, the roll effectiveness of the vented spoiler was more than three times that of the plain spoiler but was sufficient to meet the specifications only at M = 2.35.

INTRODUCTION

The loss of effectiveness at high angles of attack and an inherent nonlinear variation of effectiveness with deflection, particularly at low speed, are characteristics of the plain flap type spoiler. In order to alleviate this situation, several means have been utilized. One method of improving the effectiveness is to combine with the spoiler a slot through the wing and a deflector installed on the lower surface of the wing, as presented in references 1 and 2. In addition, relatively low hinge moments can be obtained with the proper projections of the upper-surface spoiler and the lower-surface deflector. Another means of obtaining greater lateral control than is possible with plain spoilers is by the use of all-movable tip ailerons. Inasmuch as the moment of the control forces about a given axis is approximately proportional to the control-area moment about that axis, the tip aileron with its large

lever arm about the roll axis can be expected to be very effective as a roll control. Furthermore, the hinge-moment characteristics can be readily controlled by proper location of the hinge line to balance the forces on the control.

In order to provide a comparison of the effectiveness of plain spoilers, spoiler-slot-deflectors (hereafter referred to as vented spoilers), and all-movable tip ailerons on a trapezoidal wing, an investigation was conducted in the 9- by 7-foot test section of the Ames Unitary Plan wind tunnel. Information regarding this wind tunnel is presented in reference 3. The results are presented and discussed herein.

COEFFICIENTS AND SYMBOLS

The system of axes and positive direction of forces, moments, and angles are presented in figure 1, which shows the coefficients, C_L , C_D , C_m , C_l , C_Y , and C_n , referred to the stability axes. The moment center was located at the quarter chord of the wing mean aerodynamic chord. The coefficient C_D was based on the balance drag only (not corrected for base pressure), since the internal drag due to the air flow in the ducts was not measured.

The sign convention of aileron deflection is designated in figure 1; that is, for either left or right aileron, positive direction is defined as trailing edge down.

The following coefficients and symbols are used in this report:

ъ	wing span, ft
c	wing chord, ft
c	wing mean aerodynamic chord, ft
$c_{\mathbf{L}}$	lift coefficient, lift qS
$\mathbf{C}_{\mathbf{D}}$	drag coefficient, drag qS
C_{m}	pitching-moment coefficient, pitching moment qSc
Cl	rolling-moment coefficient, rolling moment qSb
$\mathtt{C}_{\mathbf{Y}}$	side-force coefficient, side force qS
c_n	yawing-moment coefficient, yawing moment qSb

c _{lotot}	aileron effectiveness for two tip ailerons, rate of change of rolling-moment coefficient with total aileron deflection, per deg
c_{lp}	rate of change of rolling-moment coefficient with $\frac{pb}{2V}$, per radian
M	Mach number
<u>pb</u> 27	helix angle generated by the wing tip in roll, radians
p	angular velocity in roll, radians/sec
q	free-stream dynamic pressure, lb/sq ft
R .	Reynolds number per ft
ន	total wing area (projected), sq ft
v	free-stream velocity, ft/sec
α	angle of attack of wing reference chord, deg
β	angle of sideslip of fuselage reference axis, deg
δ	individual tip aileron deflection, positive leading edge upward, deg (Subscripts L and R are used for left and right, respectively.)
8 _{tot}	total tip aileron deflection, δ_L - δ_R , deg (left and right aileron deflections equal and opposite from an offset neutral position)
δ _s	spoiler deflection, deg
Δ	increment resulting from control deflection

MODEL AND APPARATUS

The model (figs. 2, 3, and 4) consisted of a low-aspect-ratio wing located above the fuselage center line, a "T" tail, and two nacelles, one on each side of the fuselage under the wing-fuselage junction. The wing had a 3.5-percent-thick biconvex airfoil section, an aspect ratio of 3.2, a taper ratio of 0.4, and a leading-edge sweepback of 25.75°. Drawings and details of the model are shown in figures 5, 6, and 7. The geometric characteristics are presented in table I.

Three types of lateral control systems were tested - tip ailerons. plain spoiler, and vented spoiler. Tip ailerons were located on both the left and right wing tips and could be deflected 10°, 20°, or 30° in either direction. For this control configuration, outrigger housings were located inboard of the tip ailerons as shown in figure 3. The plain spoiler was installed on the upper surface of the left wing panel only. This control was investigated at 25° and 50° deflection, which is equivalent to vertical projections from the upper wing surface of approximately 0.03c and 0.06c, respectively. A detail of the combination of 25° plain spoiler and -200 left tip aileron deflections is shown in figure 3. The vented spoiler configuration, installed on the left wing only, consisted of a spoiler mounted on the upper surface of the wing, a slot through the wing, and a deflector installed on the lower surface. Both spoiler and deflector were set at 25° (the only deflection tested), which is equivalent to projections of 0.06c and 0.04c, respectively. With this control device, the outrigger housings were moved outboard to the wing tips and reduced in length (fig. 4). In order to study the effect of air flow through the vented area in the wing, two blockages (17- and 29-percent) were investigated. Blockage was defined as the ratio (in percent) of the blocked area to the total area of the slot. Zero blockage was not possible because of the 0.37-inch-thick chordwise supporting ribs.

PROCEDURE

During the investigation, test data for all configurations were obtained by varying the angle of attack from -3° to 15° at $\beta \approx 0^{\circ}$. Two of the configurations, complete model and model with -10° left tip aileron, were also investigated through a range of sideslip angles from -3° to 9° at angles of attack of 2° , 5° , and 9° . The Mach numbers were 1.55, 1.90, and 2.35 and the Reynolds number was approximately 1.4×10⁶, based on the wing mean aerodynamic chord.

To obtain the aileron effectiveness, the left tip aileron was deflected from 20° to -30° at increments of 10° . Tests were also run with ailerons deflected differentially from an offset neutral position as shown in the table below.

$\delta_{ m L}$, deg	δ _R , deg	δ _{tot} , deg	Offset neutral position, deg	Differential deflection from neutral position, deg
-10	-10	0	· -10	0
-20	-10	-10	- 15	5
- 20	10	- 30	- 5	15

The two attitudes of the plain spoiler investigated were 25° and 50° deflection. Also investigated was the combination of -20° deflection of the left tip aileron and 25° deflection of the plain spoiler.

The vented spoiler control was deflected only at 25°; the deflector was set at the same angle. Vent blockages of 17 and 29 percent were investigated.

Tip aileron deflections of 0° and 10° (left aileron) were also run with both horizontal and vertical tails removed in order to evaluate possible interference effects of the flow field in the region of the tail.

The precision of the data is indicated by the last significant figure to which the data are tabulated.

RESULTS AND DISCUSSION

The six-component wind-tunnel data are tabulated in coefficient form in table II. Since the investigation was concerned primarily with lateral control, only the rolling-moment and yawing-moment data of table II have been presented in graphical forms. These summary graphs will be utilized in the following presentation of the control characteristics.

Tip Ailerons

Rolling power. The variation of incremental rolling-moment coefficient with aileron deflection at various angles of attack is presented in figures 8 and 9. Included are data obtained with ailerons deflected individually and with ailerons differentially deflected from an offset neutral position. In general, aileron effectiveness increased with increasing angle of attack. This effect was substantial at M=1.55, but was less pronounced at M=1.90 and 2.35. The differential deflection data of figure 9 indicated approximately the same unit effectiveness as that obtained with individual aileron. Based on figure 8, the variation with Mach number of aileron effectiveness for two ailerons deflected differentially from zero neutral position is presented in figure 10. The values of C_{10} for the angle-of-attack range indicated were taken as average slopes over the range of aileron angles tested. A decrease in effectiveness with increasing Mach number is evident.

Deflecting ailerons differentially from an offset neutral position is envisioned as a means of decreasing local angles of attack at the ailerons when the wing angle of attack is large, thereby maintaining aileron effectiveness.

The test results (table II) obtained with both horizontal and vertical tail surfaces removed indicated nearly the same incremental rolling moments due to aileron deflection as those obtained with the complete model configuration. Accordingly, it can be inferred that wing-tail interference was slight.

Yawing moments due to aileron deflection. The incremental yawingmoment coefficient due to left tip aileron deflection at zero angle of
sideslip is presented in figure 11. The yawing moments due to ailerons
deflected differentially from various offset neutral positions are shown
in figure 12. The zero neutral position curve is obtained from the data
of figure 11; the offset neutral position curves are derived from data
obtained with combined left and right ailerons. The curves presented in
figure 12 are typical of data for other offsets and total aileron deflections. A close study of figures 11 and 12 reveals that data obtained
with ailerons deflected individually are additive; accordingly, data for
an individually deflected aileron can be used to predict with reasonable
accuracy yawing moments due to differentially deflected ailerons.

Plain Spoiler

Rolling power. The variation of the incremental rolling-moment coefficient with angle of attack for 25° and 50° deflection of the plain spoiler is presented in figure 13. The effectiveness decreased with increasing angle of attack and Mach number.

Yawing moments due to plain spoiler deflection. The incremental yawing-moment coefficient due to 25° and 50° deflection of the plain spoiler at zero angle of sideslip is shown in figure 14. The yawing moments were negligible at M = 1.55 and 1.90, and were small, but not adverse, at M = 2.35. At high angles of attack the yawing moment and rolling moment were approximately of the same magnitude.

Vented Spoiler

Rolling power. The variation of incremental rolling-moment coefficient with angle of attack for 25° deflection of the vented spoiler with 17- and 29-percent vent blockages is presented in figure 15. At M = 1.55, ΔC_l decreased with increasing angle of attack; at M = 1.90 and 2.35, the effect of angle of attack was slight. The effectiveness decreased with increases in Mach number and vent blockage.

Yawing moment due to vented spoiler deflection. The incremental yawing-moment coefficient due to 25° deflection of the vented spoiler

with 17- and 29-percent blockages at zero angle of sideslip is shown in figure 16. Favorable yawing moments were indicated throughout the angle-of-attack range at all Mach numbers. The yawing moments with either value of blockage decreased with increasing angle of attack at M=1.55. At M=1.90 and 2.35, $\Delta C_{\rm n}$ was approximately constant for both blockages for angles of attack up to about 12° . It is evident that the effect of vent blockage was generally small and was only noticeable at M=1.90 for angles of attack greater than 6° .

Comparison of the Various Control Devices

Incremental rolling moments. A comparison of the incremental rolling-moment coefficients for several lateral control devices is shown in figure 17. The tip ailerons provided, by far, the greatest rolling moments. The vented spoiler, compared with the plain spoiler at the same deflection (25°) , was more than three times as effective at $\alpha = 2^{\circ}$ for all Mach numbers. At high angles of attack the effectiveness of the plain spoiler deteriorated to a negligible amount (fig. 13); the vented spoiler essentially retained its effectiveness (fig. 15).

Roll capability. The estimated controllability presented as the variation of pb/2V with Mach number for several control systems is shown in figure $18.^2$ The military specification requirement was determined from reference 5 for a representative Class II airplane at an altitude of 40,000 feet. From figure 18 it can be seen that at the lower Mach number the specified rolling rate is attainable only with tip ailerons. Total aileron deflection of 50° will be required at M = 1.55; only 10° will be required at M = 2.35.

The lack of roll power of the spoilers at the low Mach number is quite apparent; the required pb/2V of 0.066 was far from being satisfied with any spoiler configuration. Only at the higher Mach number was the required value of 0.015 attainable with spoiler configurations. The estimated value of pb/2V based on 50° spoiler and 35° aileron deflections indicated that the roll capability was adequate. It must be realized, however, that the ailerons accounted for more than 69 percent of the roll power.

²For the condition of steady roll about the longitudinal wind axis, the roll helix angle is defined as $pb/2V = C_1/C_{1p}$, where C_{1p} is the damping-in-roll derivative of the wing. This equation neglects the damping of other parts of the airplane. Values of C_{1p} obtained from reference 4 were -0.338, -0.271, and -0.215 at M = 1.55, 1.90, and 2.35, respectively. Estimates of pb/2V were made for a rigid wing, that is, no effect of aeroelasticity was considered, and were based on $\alpha = 2^{\circ}$.

The effects of aeroelasticity on tip aileron effectiveness were approximated by calculating for specified flight conditions the deformation of a typical thin wing structure, and increasing by this amount the aileron deflections that were previously calculated from the experimental results which correspond to a rigid wing. The results are illustrated in the following tabulation:

	Total ailer	on deflection
Mach number	Rigid wing	Elastic wing
1.55	50°	60°
1.90	34°	50° 20°
2.35	10°	20 ⁰

It is evident that the effects of aeroelasticity are substantial. Aeroelastic effects on vented spoiler effectiveness can also be pronounced. For example, at M = 2.35, a spoiler deflection of 25° will produce a pb/2V of 0.024 for a rigid wing but only 0.014 for an elastic wing.

Yawing moments due to lateral control deflection. Yawing moments are generally considered in the study of lateral control. Figure 12 indicates that favorable yaw due to two ailerons deflected differentially from zero neutral position will be experienced at $\alpha < 4^{\circ}$ at M = 1.55 and 1.90. At greater angles of attack and for all positive angles at M = 2.35, aileron deflection will generally result in adverse yawing moments.

When ailerons are differentially deflected from an offset neutral position (fig. 12), the resulting yawing moments at all Mach numbers will be favorable over a larger portion of the angle-of-attack range than those for ailerons deflected from zero neutral position. The angle-of-attack range over which favorable yaw will be experienced becomes larger with increasing initial offset aileron angles.

One advantage of the spoiler type of lateral control device is that the yawing moments produced are generally favorable, or small if adverse. This investigation substantiates this characteristic for, as previously mentioned, the incremental yawing moments due to the plain spoiler deflection were generally small and those due to the vented spoiler were favorable.

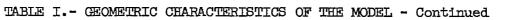
CONCLUDING REMARKS

An investigation of the lateral control characteristics of tip ailerons, a plain spoiler, and a vented spoiler on a low-aspect-ratio trapezoidal wing was conducted in the Ames 9- by 7-foot supersonic wind tunnel at Mach number of 1.55, 1.90, and 2.35 and at a Reynolds number of approximately 1.4×10⁶.

Of the three lateral controls investigated, the tip ailerons were by far the most effective. Estimated roll helix angles produced by the tip ailerons were adequate to satisfy the military specification requirement at all Mach numbers. The roll capability of the vented spoiler at 25° deflection satisfied the specification requirement only at M = 2.35. The vented spoiler compared with the plain spoiler at the same deflection (25°) was more than three times as effective at low angles of attack. At high angles of attack, the effectiveness of the plain spoiler deteriorated to a negligible amount; the vented spoiler essentially retained its effectiveness.

The effectiveness of tip ailerons generally increased with increase in angle of attack, particularly at M=1.55, and decreased with increasing Mach number. The angle-of-attack range over which tip ailerons provided favorable yawing moments became larger with increasing initial offset angles.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Sept. 26, 1957


REFERENCES

- 1. Wenzinger, Carl J., and Rogallo, Francis M.: Wind-Tunnel Investigation of Spoiler, Deflector, and Slot Lateral-Control Devices on Wings With Full-Span Split and Slotted Flaps. NACA Rep. 706, 1941.
- 2. Vogler, Raymond D.: Wind-Tunnel Investigation at Transonic Speeds of a Spoiler-Slot-Deflector Combination on an Unswept NACA 65A006 Wing. NACA RM L53J21, 1953.
- 3. Huntsberger, Ralph F., and Parsons, John F.: The Design of Large High-Speed Wind Tunnels. AGARD, Fourth General Assembly Wind-Tunnel Panel, Scheveningen, Netherlands, May 4, 1954.
- 4. Harmon, Sidney M., and Jeffreys, Isabella: Theoretical Lift and Damping in Roll of Thin Wings with Arbitrary Sweep and Taper at Supersonic Speeds. Supersonic Leading and Trailing Edges.
 NACA TN 2114, 1950.
- 5. Anon: Flying Qualities of Piloted Airplanes. Military Specification Mil-F-8785 (ASG), including Amendment 2, 17 Oct. 1955.

TABLE I.- GEOMETRIC CHARACTERISTICS OF THE MODEL

7774	
Wing	
Area (projected), sq ft	
Aspect ratio	
Taper ratio	
Span, ft	
Mean aerodynamic chord, ft	
Root chord, ft	1.054
Leading edge location	
Station, in	
	6.86
Tip chord, ft	0.422
Dihedral, deg	
Incidence, deg	
Sweepback (projected plane), deg	
Leading edge	
Quarter-chord line	
Trailing edge	
	Biconvex
Percent thickness	
Tip aileron	
Area, sq ft	0.0534
Span at hinge line, ft	
_ · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Inboard chord, ft	
Tip chord, ft	
Hinge line, percent wing chord	35
Vented spoiler	
Area, sq ft	
Span, ft	0.703
Chord, percent wing chord	
Inboard location	_ =
	3.54
Percent semispan	25
Outboard location	
Wing station at hinge point,	in 11.98
Percent semispan	84.6
Hinge line, percent wing chord	63
Spoiler deflector	
Area, sq ft	0.0513
Span, ft	
Chord, percent wing chord	10
Inboard location	
	3.54
Percent semismen	25
TOTOGEO DOMED PORT	

Outboard location													
Wing station, in		•	•					•		•	•		11.98
Percent semispan		•									•		84.6
Hinge line, percent wing chord							•				•		73
Plain spoiler													
Area, sq ft													0.0323
Span, ft													0.555
Chord, percent wing chord													8
Inboard location				•			•	-	_	-	•	- •	Ŭ
Wing station, in							_	_	_				3•97
Percent semispan													28
Outboard location		-	-	•	•	• •	•	•	•	•	•	• •	20
Wing station at hinge point,	in												10.62
Percent semispan													75
Hinge line, percent wing chord													69
	• •	•	•	•	•	• •	•	•	•	•	•	• •	69
Fuselage													l. ola
Length, ft													4.241
Maximum height, ft													0.300
Maximum width, ft	• •	•	•	•	•	• •	•	٠	•	•	•	• •	0.263
Vertical tail													
Area, sq ft													0.292
Aspect ratio													1.
Taper ratio													0.67
Span, ft													0.540
Root chord, ft	• •	•	•	•	•	• •	•	•	•	•	•	• •	0.645
Leading edge location													
Station, in													45•90
Water line, in													8.10
Tip chord, ft		•	•	•	•		•	•	•	•	•		0.435
Leading edge location													
Station, in		•	•	•	•		•	•	•	٠			54•25
Water line, in		•	•	•				٠	•	•			14.58
Sweepback (projected plane), deg													
Leading edge		•								•			52.2
Quarter-chord line													50
Trailing edge													42
Airfoil section													64A007
Horizontal tail											•		
Area (projected), sq ft									_				0.354
Aspect ratio											_		3•5
Taper ratio					:		-	-	_	-	-	- •	0.3
Span, ft						- •	•				-	- •	1.110
Root chord, ft					_		•	•	•	•	-		0.495
Leading edge location		•	•	•	•	• •	•	•	•	•	•	- •	○●マラノ
Station, in													53.11
Water line, in		•	•	•	•	• •	•	•	•	•	•	• •	14.58
ugoet true, in	• •		<u>.</u>	<u>.</u>	•	• •		•	•	•	•	• •	14070

TABLE I. - GEOMETRIC CHARACTERISTICS OF THE MODEL - Concluded

	0.143
Dihedral, deg	15
Sweepback (projected plane), deg	
Leading edge	44.93
Quarter-chord line	4O
Trailing edge	19.93
Airfoil section	64A005
Outrigger housing	
Length, ft	0.864
Maximum height, ft	0.068
Maximum width, ft	0.045
	. _'
	- 30 • 83
Water line, in	6.45
Center line location, wing station, in	12.16
With vented spoiler configuration	
Length, ft	0.786
Maximum height, ft	0.068
Maximum width, ft	0.045
Leading edge location	
Leading edge location Station, in	31.71
Water line, in.	6.45
Center line location, wing station, in	14.16
Tail bullet fairing	
Length, ft	0.871
Maximum height, ft	0.098
Maximum width, ft	0.113
Leading edge location	/3
Station, in	51.10
Water line, in	12.24
1	

TABLE II.- AERODYNAMIC DATA
(a) Basic model with tip aileron

α, β, C _L C _D C _m C _l	cY cn	o, f, C,	C ₁ C ₁ C ₂
$\delta_{L} = 0^{\circ}; \ \delta_{R} = 0^{\circ}; \ R = 1.55; \ R =$	1.9×106	$\delta_{\tilde{L}} = 0^{\circ}$; $\delta_{\tilde{R}} = 0^{\circ}$; $K = 1.55$; $R = 1.8 d0^{\circ}$ $\delta_{\tilde{L}} = 0^{\circ}$; $\delta_{\tilde{R}} = 0^{\circ}$; $K = 1$	1.55; R = 1.8410 ⁴
-3.6 -0.9 -0.35 0.076 0.169 0.001 0 -508 .047 .065 .000 2.45 .10 .048007 .000 5.8 -5 .36 .076108001 8.85 .36 .123190001 11.75 1.4 .185231001 11.65 .92 .026318001	-0.00 0.002 00 .003 00 .004 00 .004 00 .004 00 .003	0.6-3.2 0.120 -0.113 0.008 0.05 -0.019 5.9 -3.2 0.36 0.076 -0.10	05 0.003 0.05 -0.019 0800302 .010 0900503 .015 0601207 .032 0801710 .047 0502214 .060
8 _L = 0°; 8 _R = 0°; M = 1.90; R =	2.7X10 ⁸		L.90; R = 1.8:10 ⁶
-3.6326 0.063 .091 .000 0306 .041 .027 .000 1 .027 .000 1 .027 .000 1 .027 .000 1 .027 .000 1 .027 .000 1 .00	00 .002 00 .002 00 .002 00 .002 00 .002	3.6 -3.0 .51 .117 .174 .005 .0401	9000100 .006 90003002 .009 90007005 .009 9701108 .029 9701512 .038 1200915 .046
			
-3.5119 .054 .028 .001 2.81 .09 .037034 .001 5.71 .21 .050059 .001 8.51 .34 .077089 .001 11.31 .47 .118134 .001 12.21 .61 .176179 .001	.00000 .00000 .00000 .00001 .00001	1,4 6 38 .099 103 001 00 .001 5.6 1.2 .21 .050 05 1,4 1.2 .39 .090 107 001 00 5.6 1.2 .21 .050 05 1,5 3.2 .39 .090 127 005 00 5.6 3.2 .21 .050 05 1,5 5.2 .39 .091 130 008 07 .004 5.6 5.2 .21 .051 0 1,4 7.3 3.6 .093 161 014 14 .026 5.6 9.3 .21 .051 0 1,4 7.3 3.6 .093 161 014 14 .026 5.6 9.3 .21 .051 0	59 .00001 .001 5900001 .003 5900303 .003 6900506 .025 7700609 .021
$b_{L} = 0^{\circ}; b_{R} = 0^{\circ}; M = 1.55; R =$	1.840	$\delta_{L} = -10^{\circ}; \ \delta_{R} = 0^{\circ}; \ M = 1.55; \ R = 1.9 \times 10^{\circ} $ $\delta_{L} = -10^{\circ}; \ \delta_{R} = 0^{\circ}; \ M = 1.55$	1.55; R = 1.9×10 ^d
2, 1 -3, 2 .09 .048001 .008 2, 1 .2 .09 .047005005 2, 1 .8 .10 .048007011 2, 1 1 .8 .10 .048007011 2, 1 1 .8 .10 .049005007 2, 1 6, 8 .10 .049009023 2, 1 8, 9 .11 .049029028	.04017 02 .014 06 .030 10 .045 13 .057 16 .065	1.6 5 36 .079 .178 004 00 002 9.7 -3.2 .60 .138 15 .15	02004 .01002 0501003 .015 0601608 .032 0802112 .046 9102516 .057
$\delta_{\rm L} = 0^{\rm O}; \ \delta_{\rm R} = 0^{\rm O}; \ M = 1.90; \ R =$	1.840	$b_{\bar{L}} = -10^{\circ}$; $b_{\bar{R}} = 0^{\circ}$; $H = 1.90$; $B = 1.7 \times 10^{\circ}$ $b_{\bar{L}} = -10^{\circ}$; $b_{\bar{R}} = 0^{\circ}$; $K = 0^{\circ}$	1.90; R = 1.7000°
2.3 -3.0 .08 .0\(\chi_2\)020 .007 2.3 1.4 .08 .0\(\chi_1\)019001 2.3 1.0 .08 .0\(\chi_1\)02\(\chi_2\)002 2.3 3.0 .0\(\chi_1\)02\(\chi_1\)02\(\chi_1\)02\(\chi_1\) 2.3 5.1 .08 .0\(\chi_2\)02\(\chi_1\)01\(\chi_1\) 2.3 7.1 .08 .0\(\chi_2\)0\(\chi_1\)02\(\chi_1\)	01012 01 .003 02 .008 05 .028 01 .037 11 .035	-307 .042 .03100301000 9.6 -3.0 .49 .11316 .16 .1328 .007 .05800301001 9.6 .4 .50 .11316 .15 .10 .00608500301 .000 9.6 .4 .50 .11316 .17 .3 .27 .06109500301 .001 9.6 3.1 .50 .11317 .17 .17 .17 .17 .17 .17 .17 .17 .17	6900502 .00k 6900602 .007 7001006 .017 7001409 .028 7201913 .037 7702317 .046
$\delta_{L} = 0^{\circ}; \ \delta_{R} = 0^{\circ}; \ R = 2.35; \ R =$		$\delta_{L} = -10^{\circ}$; $\delta_{R} = 0^{\circ}$; $M = 2.35$; $R = 1.700^{\circ}$ $\delta_{L} = -10^{\circ}$; $\delta_{R} = 0^{\circ}$; $M = 2.35$; $\delta_{R} = 0^{\circ}$; $\delta_{R} = 0^{$	
2.3 -2.9 . 06037089 .005	-01 -008 -01 -004 -04 -00 -06 -06 -09 -022 -12 -086	1.5 -1.1 -2.2 .056 .032 002 01 001 9.4 -2.9 .37 .087 10 .37	0300401 .002 0400402 .003 1400604 .009 2501107 .015 1101411 .021
8 _L = -10°; 8 _R = 0°; M = 1.55; R	= 1.9×10°	$\delta_{L} = -10^{\circ}$; $\delta_{R} = 0^{\circ}$; $M = 1.55$; $R = 1.8 \times 10^{6}$ $\delta_{L} = -20^{\circ}$; $\delta_{R} = 0^{\circ}$; $M = 1.8 \times 10^{6}$	1.55; R = 1.840°
5.6 -3.2 .3\(\) .07\(\)093 .00\(\) 5.6 -1.2 .3\(\) .07\(\)09800\(\) 5.8 .8 .8 .33 .07\(\)09800\(\) 5.8 2.8 .33 .07\(\)09800\(\) 5.8 4.8 .33 .07\(\)09800\(\) 5.8 6.8 .33 .07\(\)097027 5.8 6.9 .33 .07\(\)097021	.04080 0303 0304 07050 11050 1306	.3 -3.2 .08 .048 .007 .007 .0409 -3.6538 .085 .18 .13 -1.2 .08 .048 .003002 .01004 .11 -511 .053 .06 .18 .38 .00 .00903 .00 .2 .9 -5 .11 .052 .00 .3 .8 .8 .08 .048 .00001506 .088 5.85 .33 .07508 .3 4.8 .07 .08 .048 .000021021 .0 .043 .7 .5 .3 .3 .075 .18 .2 .2 .2 .2 .3 .3 .075 .0 .3 .4 .8 .07 .08 .048 .000021021 .0 .043 .7 .5 .5 .3 .3 .075 .0 .18 .2 .2 .3 .4 .8 .07 .08 .04902102714 .056 .14 .5 .5 .7 .2 .18 .2 .2 .3 .3 .3 .0 .09 .09 .09 .09 .09 .091 .09217 .005 .14 .6 -5 .8 .2 .2 .2 .2 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	1009 .00009 19009 .00003 1601000000 1701100 .002 1401100 .003 1201301 .005
	1.7x10 ⁶	$\delta_{L} = -10^{\circ}$, $\delta_{R} = 0^{\circ}$, $\kappa = 1.90$, $R = 1.700$ $\delta_{L} = -20^{\circ}$, $\delta_{R} = 0^{\circ}$, $\kappa = 1.700$	
5.7 -3.0 .27 .061091 .003 5.7 .4 .27 .060088095 5.7 1.0 .26 .060087006 5.7 3.0 .26 .060091000 5.7 7.1 .26 .061093015 5.7 7.1 .26 .061098019 5.7 9.1 .26 .062107023	-03 -02 -02 -03 -05 -05 -05 -08 -08 -08 -08 -08 -08 -08 -08 -08 -08	.3] -3.0 .06 .042018 .004 .03013 -3.6328 .071 .05 .31 .4 .07 .04101700502 .004 .1 -308 .046 .0 .33 1.0 .07 .04101800602 .007 2.8 -3 .09 .045 .006 .0 .33 3.0 .06 .04102800602 .007 2.8 -3 .09 .04500 .33 3.0 .06 .04102901105 .007 5.7 -3 .26 .026 .02 .007 .3 5.1 .07 .04202902503 .027 8.6 -3 .43 .097 .11 .3 7.1 .07 .04203102011 .036 11.53 .60 .15022 .3 9.1 .07 .04304302412 .044 12.43 .76 .21822	\$200500003 00600000 00600000 00600000 00900 .000 00900 .000
δ _L = -10°; δ _R = 0°; H = 2.35; R	1.7×105	$\delta_{L} = -10^{\circ}; \ \delta_{R} = 0^{\circ}; \ M = 2.35; \ R = 1.8 \cdot 10^{\circ}$ $\delta_{L} = -20^{\circ}; \ \delta_{R} = 0^{\circ}; \ M = 1.8 \cdot 10^{\circ}$	2.35; R = 1.7×10 ⁶
5.6 -2.8 .20 .050056 .001 5.6 .6 .2 .19 .049055003 5.6 1.2 .19 .049059006 5.6 3.2 .20 .049059006 5.6 7.2 .20 .050073012 5.6 7.2 .20 .050073012 5.6 9.3 .20 .050003	-01 -007 -02 -03 -04 -09 -07 -05 -09 -07 -13 -025	.3 -2.9 .05 .037086 .002 .03008 -3.5121 .061 .05 .31 .12 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	9900600002 9900600002 9500600001 99006 .00001

TABLE II. - AERODYNAMIC DATA - Continued
(a) Basic model with tip aileron - Concluded

dag	β, deg	c _L	$\sigma_{\!\scriptscriptstyle D}$	C _m	c,	c ^x	c _n	œ,	β, deg	c _L	c _D	C _M	o,	cx	c _n	deg	đạ đạ	c _L	o _D	C _m	c ₁	σχ	C _{th}		
ð _I	. - -3	o°; ô _R	- 0°;	X = 1	.55; R	= 1.90	10g	$b_{\rm L} = 10^{\rm o}$; $b_{\rm R} = 0^{\rm o}$; $M = 1.55$; $R = 1.5000^{\rm o}$								8 _L = 20°; 5 _R = 0°; N = 1.55 R = 1.8c10°									
-0.1 -0.4 -0.12 0.063 0.090 -0.02 0.0 -0.02 2.9 -1.4 .10 .061 .000 -0.03 .0 -0.02 5.8 -1.4 .32 .083 -0.890.1 .0 -0.0 9.3 -1.4 .99 .134 -1.000.5 .000.3 19.4 -5 .76 .204 -295 -0.060. 000 119.6 -5 .94 .294 -3330.70 .000								-3.6 0 2.9 5.8 9.3 12.5 15.7	0.555555	-0.34 07 .15 .37 .61 .81	0.075 .048 .053 .080 .110 .215 .313	.061 028 115 211	0.05 .05 .05 .06 .06 .05 .05	66888888888888888888888888888888888888	0.03 .03 .03 .03 .03 .03	-3.6 0 2.9 5.9 9.3 12.5 15.2	0.5055544	-0.32 .06 .16 .38 .88 .98	.053 .060 .089	.054 035 121 216 289	0.00 .01 .01 .03 .09 .09	-0.8 8 8 8 8 8	0.003 .001 001 008 003 00A 005		
$\delta_{\rm L} = -30^{\rm o}$; $\delta_{\rm R} = 0^{\rm o}$; $H = 1.90$; $R = 1.8 {\rm d}.0^{\rm o}$								81	= 10	o, b _R	= 0°;	H = I.	90; R =	1.74	.0°	ð <u>r</u>	- 20	o's Be	= 0°;	K = 1.	90; R -	1.70	0°		
-3.6 1 2.8 5.7 9.1 12.2	2 3 3	88 08 .08 .27 .45	.081 .055 .053 .069 .111 .170	.097 .031 027 085 158 218	011 012 012 013	.00	010 007 006 001 001	-3.6 0 2.9 5.7 9.2 12.3 15.5	3	25 05 12 .89 .49 .67	.064 .043 .065 .065 .113 .178 .261	300	66.66.66.66.66.66.66.66.66.66.66.66.66.	00 00 00 00 00	-00- 200- 200- 200- 200- 200- 200- 200-	-3.5 0 2.9 5.8 9.2 12.3 15.5	3333340	- 84 - 04 - 13 - 30 - 50 - 55	.072 .121 .186 .271	.020 039 100 171 235 304	.009 .009 .009 .009 .008 .008	61 80 80 80 80	.00L 00L 00E 003 006 008		
B _L	· -3	00,82	= 00;	M = 2	-35; R	= 1.8×	100	87	= 10	o, 8 <u>a</u>	- 0°;	H = 2,	35; R =	1.84	.O=	δĽ	- 20	کتو ئی	- 0°;	X = 2.	35; R =	1.7%1	وم		
-3.5 1 2.8 5.6 9.0 12.1 15.2		- 88 - 06 - 06 - 34 - 9 - 6	.069 .049 .047 .057 .087 .133 .199	03 03 030 057 098 145 193	009 009 009 009 010 011	8888888		-3.5 0 2.8 5.6 9.0 12.1 15.3	1 1 1 1 1	-19 -09 23 37 24 57	038 038 039 087 137 207		5555555	8888888	000 000 000 000 000 000	-3.5 0.8 5.7 9.1 12.3	777777	20122888	.099 .094 .142	- 013 - 040 - 065 - 104 - 152 - 205	.008 .008 .008 .008 .008 .007	888888	001 002 003 005 005 006		
δL	10	o, b _E	10	у н =	1.55; R	- 1,8	bao ^a	ðį,	- `-20	o, b _R	10) X =	1.55; 3	- 1.8	4100	ð <u>r</u> .	20	o, ogg	- 10°	N = 1	.55; B	- 1.7x	10 ⁴		
-3.7 2.9 5.8 9.3 12.4 15.7	2000000	38 -33 -57 -77 -95 11	900 5 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 65 - 65 - 65 - 65 - 65 - 65 - 65 - 65	000 000 000 000 000 000		888888888888888888888888888888888888888	-3.7 2.9 5.8 9.3 12.4 15.6	5 5 5 5 5	39 12 .13 .32 .55 .75 .93	.091 .056 .054 .076 .128 .197	355 355 355 355 355 355 355 355 355 355	- 004 - 005 - 005 - 005 - 006 - 006	988888	- 600 - 600	-3.6 2.9 5.8 9.0 11.7 14.6	5555555	5.13.13.56.25 5.13.13.56.25 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.13.15 5.13.15	.130	.180 .075 006 102 187 251 310	012 014 016 017 017	88888	- 009		
6 _L	10	ο, 8 ₁₈	= -10°	; H =	1.90; R	= 1.7	×10 ⁶	δL	20	°; b _p	10); H =	1.90; B	- 1.7	XIOg	ō _L	20	o, a _R	- 10°	X = 1	.90; R	- 1.8k	10°		
-3.6 0 2.8 5.7 9.1 12.2 15.4	3111111	28 08 .09 .26 .46 .63	66 66 16 16 16 16 16	- 057 - 057 - 057 - 057 - 151 - 217 - 217	.000 .000 .000 .000 .000		.03 .03 .03 .03 .03 .03 .03	-3.6 2.8 5.7 9.1 12.2 15.4	3 3 3 3 3	385 B 28 B	.076 .049 .047 .063 .103 .163	- 032 - 086 - 154	5555555	8885855	.085 .087 .087 .089	3.6 2.8 3.7 8.5 14.9		2022445	.103 .157	.096 .030 030 092 152 210 279	012 012 013 013	888888	00A 002 000 .001 .003 .00A		
ð <u>r</u>	10	o, a _R	10°) H =	2.35, R	= 1.7	×10°	βL	20	o, or	10	'; × -	2.35; B	- 1.7	X10°	ō <u>r</u> .	2 0	o; og	- 10°	K = 2	-35; R	- 1.8	104		
-3.5 1 2.8 5.6 9.0 12.1 15.2	1 1 1 1	200 200 200 200 200 200 200	.060 .040 .038 .050 .081 .127	.034 002 029 052 093 141 189	.001 .001 .001 .001 .001	- 6000000000000000000000000000000000000	.000 .000 .000 .000	-3.5 2.8 5.6 9.0 12.0	1 1 1 1 1 1	- 28 - 07 - 08 - 18 - 34 - 64	.064 .043 .041 .052 .082 .127 .192	.036 000 027 051 095 141 188	003 003 003 003 003 003		002 001 001 001 000	-3.5 0 2.8 5.6 8.5 11.3 14.7	1	1 5 5 8 3 7 G	.061 .043 .055 .081 .122 .189		010 010 010 010 011 011	.00			

TABLE II.- AERODYNAMIC DATA - Continued (b) Model less tail

a, deg	ß,	c _r	c _D	Cag	c ₁	c _T	C _E	a.,	ŝ,	c,r	C _D	C _m	c ₁	C _Y	C _E
	z = 0	o, a,	= 0°;	¥ = 1.	55; R =	1.901	ð,	. = -1	տ ^o յ ծյ	3 = 0°	M = 1	55; R	- 1.9	40 6	
-3.7 1 2.9 5.9 9.4 12.5 15.8	-0.55.55.55.55	984.************************************	.037 .042 .068 .123	0.021 - 015 - 047 - 07 - 131 - 131	.000 .001 .001 .005 .005	-0.00	002 000 001 001 001	-3.7 1 2.9 5.9 9.3 12.5 15.8	0.5555555		0.066 .039 .042 .067 .180 .187		-0.004 004 004 005 005	\$888888	-0.00 001 001 000 000 000
-	Z = 0)°; &	- 0°;	X = 1.	90; R =	1.84	.oe	ô _I	. = -1	0°; 8 ₁	t = 0°	X = 1	•90; R	= 2.7	30 €
-3.6 2.8 5.7 9.2 12.3		វាទីវិទីដីទំន	**************************************	.01 01 03 05 093 13	.000 .000 .000 .000 .000	- 6000000000000000000000000000000000000	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.6 2.8 5.7 9.2 12.3 15.5	11111111111	38 F & E & E	8488848	999999	003 003 003 005	8888888	-000 -000 -000 -000 -000
	L = 0	o°; 8 _R	= 0°;	¥ = 2.	35; R =	1.7x1	o ^e	8₁	. = -3	0°; 5	- 0°	X = 2	·35; R	* 1.7>	30g
-3-5 0 2.8 5-7 9.0 12-1 15-3	1 1 1 1 1	2688228	043 027 028 042 075 121 136	- 003 - 020 - 034 - 051 - 069 - 084 - 096	.69 .68 .69 .69 .69	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	000 001 001 001 001	-3-5 1 2-8 5-7 9-0 12-1 15-3	-1	855838	\$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 032 - 032 - 039 - 067 - 082 - 093	003 002 002 003 004 004		002 001 001 000 000

(c) Basic model with tip aileron and plain spoiler

deg deg CL CD Cm Ct Cr Cn	des des C _L C _D C _E C _I C _T C _R	c., f., c., c., c., c., c., c., c.,								
$\delta_{L} = 0^{\circ}$; $\delta_{R} = 0^{\circ}$; $\delta_{S} = 25^{\circ}$; $K = 1.55$; $R = 1.8 \times 10^{\circ}$	$\delta_{L} = 0^{\circ}; \ \delta_{R} = 0^{\circ}; \ \delta_{S} = 50^{\circ};$ $M = 1.55; \ R = 1.8400^{\circ}$	$\delta_L = -20^{\circ}; \ \delta_R = 0^{\circ}; \ \delta_S = 25^{\circ};$ $R = 1.55; \ R = 1.8420^{\circ}$								
-3.6 -0.9 -0.36 0.086 0.176 -0.004 -0.01 0.004 0 -5 -1.0 0.94 0.7300301 0.04 2.9 -5 .12 0.95 -0.15 -0.0301 0.04 9.3 -5 .34 0.60 -1.0000301 0.04 9.3 -5 .58 1.96 -1.97 -0.0301 0.04 12.4 -5 .78 2.0827200301 0.04 15.7 -5 .97 301 -33300201 0.04	-3.7 -0.5 -0.38 0.096 0.176 -0.008 -0.01 0.003 -115 -111 .063 .076 -0.07 -0.01 .004 2.95 .11 .062 -0.01 -0.06 -0.01 .005 5.85 .33 .067 -0.06 -0.06 -0.01 .005 9.35 .97 .138 -1.00 -0.05 -0.01 .005 12.45 .77 .399 -2.29 -0.05 -0.01 .005 15.75 .96 .300 -327 -0.04 -0.0 .004	-3.7 -0.1 -0.39 0.096 0.191 -0.013 -0.00 -0.005 -1.01 -0.013 -0.00 -0.005 -0.03 -0.005 -0.03 -0.005 -0.03 -0.005 -								
$\delta_{\rm L} = 0^{\rm O}; \ \delta_{\rm R} = 0^{\rm O}; \ \delta_{\rm S} = 25^{\rm O}; \ {\rm H} = 1.900; \ {\rm R} = 1.7 \times 10^{\rm S}$	8 _L = 0 ⁰ ; 8 _R = 0 ⁰ ; 8 _R = 50 ⁰ ; X = 1.90; R = 1.8410 ⁶	$\delta_{L} = -20^{\circ}; \ \delta_{R} = 0^{\circ}; \ \delta_{S} = 25^{\circ};$ $H = 1.90; \ R = 1.7 \times 10^{6}$								
-3.6327 .072 .10400301 .0023330 .0050020 .0 .001 12.23 .55 .1722200010 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	-3.6 -3 -28 .061 .11300601 .002 .002 .2.8 -3 .061 .05200000701 .002 .002 .2.8 -3 .061 .05200000501 .002 .002 .001 .002 .002 .001 .002 .002	-3.6329 .080 .11101100003 -1309 .073 .04401100002 2.63 .08 .07001501000000 5.73 .27 .06607901000 .000 9.13 .27 .07601000 .000 15.23 .63 .16722301100 .001 15.43 .80 .24427601100 .002								
$\delta_{L} = 0^{0}$; $\delta_{R} = 0^{0}$; $\delta_{R} = 25^{0}$; M = 2.35; $R = 1.840$	8 _L = 0°; 8 _R = 0°; 8 _B = 50°; H = 2-35; R = 1-8-10	δη = -20 ⁰ ; δη = 0 ⁰ ; δη = 25 ⁰ ; Η = 2.35; Η = 1.δ000								
-3.5120 .061 .028001 .00003 0105 .042000 .00003 2.81 .08 .041038 .000 .00003 5.71 .20 .063063 .000 .01003 9.01 .20 .063064 .000 .01003 12.11 .50 .131144000 .01002 15.21 .65 .196193000 .01002	-3.5121 .068 .03600k .00003 0106 .0k7003003 .00003 2.81 .07 .0k5033002 .00002 5.61 .20 .056060002 .00002 9.01 .25 .086077002 .01003 12.11 .50 .1331k701 .00003 15.21 .65 .200197001 .01003	-3.5122 .067 .033068 .00007 .11106 .046004 .008 .00007 .0005 .60005 .0005								

TABLE II.- AERODYNAMIC DATA - Concluded (d) Basic model with vented spoiler

∝, deg	β, deg	O _L	СD	C _M	C ₁	C _Y	C _m	qua qui	ß, deg	o _L	σ _D	Cas	c ₁	C _T	C ₂₀	œg.	β, deg	O _L	σ _D	C _{RR}	c ₁	C _T	C _B
₽B	- 0°;	block	age 01	(j к =	1.55; 1	1 = 1.5	>70g	8g	bg = 25°; blockage 17%; M = 1.55; R = 1.9×1.0°							8g ⋅	9<10						
-3.6 0 2.9 5.9 9.3 12.5 15.7	-5	9.35 1.36 1.36 1.00 1.00	9.00 - 3.00 - 3.		0.000 000 000 000 000	01 01 01	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-3.7 -1.9 5.8 9.3 12.4 15.7	5555555	\$488££\$.072 .070 .091 .143	.009 .009 076 168	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00	00A 003	-3.7 1 2.9 5.8 9.3 12.4 15.7	0.4	97858. 9	.073 .072 .146	0.193 .093 .006 079 170 240 300		8888888	004 003 002 001
δg	= 0°;	block	age 0 9	6; M =	1.90; 1	1.8	3×1.0 ⁶	86 -	25°;	bloom	mge l'	%; H =	1.90;	R = 1	8410	8s ⋅	250	block	.a.ge 2	9≰; H	1.90;	R = 1	7×10
-3.6 0 2.8 5.7 9.1 18.3	300000000	26 06 -10 28 66	.046	.091 .027 027 092 	.000 .000 000 .000	9888888	.003 .003 .003 .003 .003 .003	-3.6 1 2.8 5.7 9.1 12.2 15.4	3333333	88:255	.090 .063 .060 .075 .116 .174	207	- 500 - 500	00 .00 .00 .00 .00	005 005	-3.6 1 2.8 5.7 9.1 12.2 15.4		-30 -00 -00 -05 -45 -63 -63	.061 .077 .119	.050 009 073 116 211	007 006 005 005 005	98888	005
δg	= 0°;	block	age 01	6; H =	2,35; 1	1 = 1.8	9430g	ð ₈ ■	2501	ploc	auge 1	7%; H =	2.35;	R = 1	840°	bg =	25°;	block	uge 2	%, X =	2.35;	R = 1	700
-3.5 0 2.8 5.7 9.0 12.1 15.3	1 1 1 1 1	- 35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.054 .037 .037 .051 .064 .133	.029 006 034 059 098 148 199	99.50	98888888	- 000 - 000 - 000 - 000 - 000	-3.5 1 2.8 5.6 9.0 12.0	1 1 1 1 1	9546838	.076 .055 .053 .063 .093 .140		- 605	.01 .01	008 008 007 008 008	-3.5 2.8 5.6 9.0 12.1 15.2	1 1 1 1 1	ទំ នម្លង់មិនទំ	.053 .065 .096	157	- 65 65 65 65 65 65 65 65 65 65 65 65 65	898888	006 006 006 006 009 009

Figure 1.- System of axes and positive direction of forces, moments, and angles.

Figure 2.- Three-quarter front view of the model with tip ailerons.

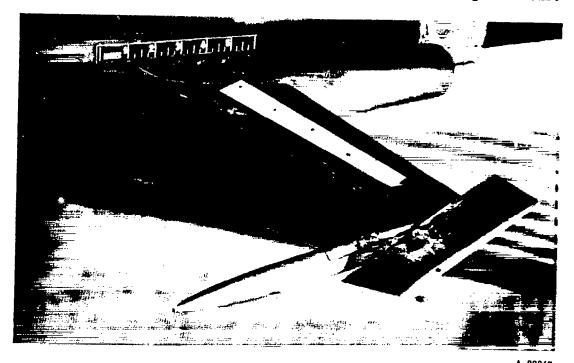
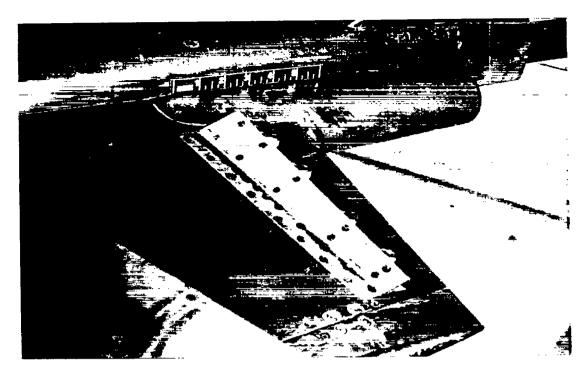



Figure 3.- Detail of the tip aileron and plain spoiler.

Continue

(a) Spoiler on the upper surface.

(b) Deflector on the lower surface; 29-percent blockage. A-22349

Figure 4.- Detail of the vented spoiler.

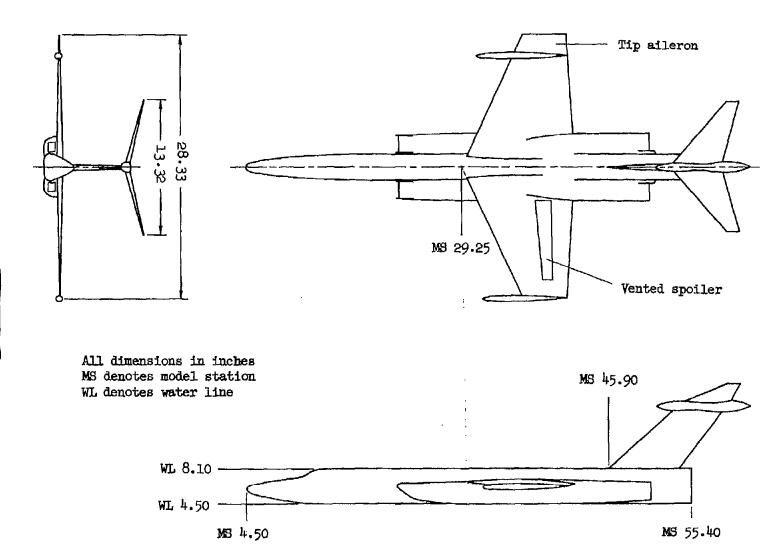


Figure 5.- Three-view sketch of the model.

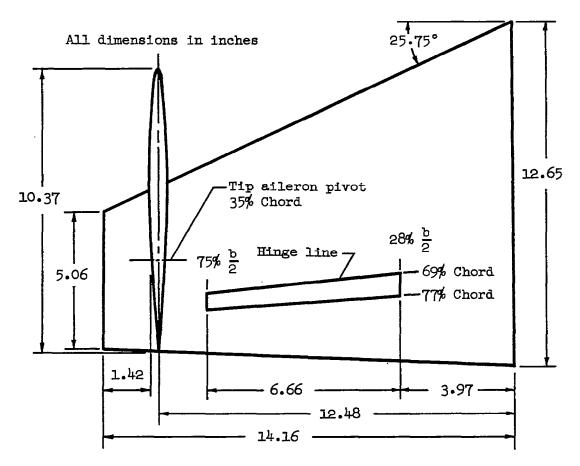


Figure 6.- Detail sketch of the tip aileron and plain spoiler.



Figure 7.- Detail sketch of the vented spoiler.

NACA RM A57126a

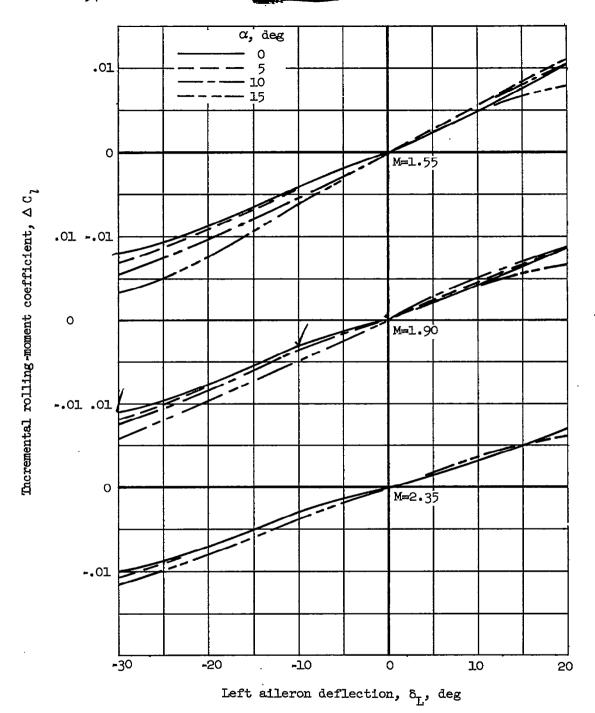


Figure 8.- The variation of incremental rolling-moment coefficient with left tip aileron deflection.

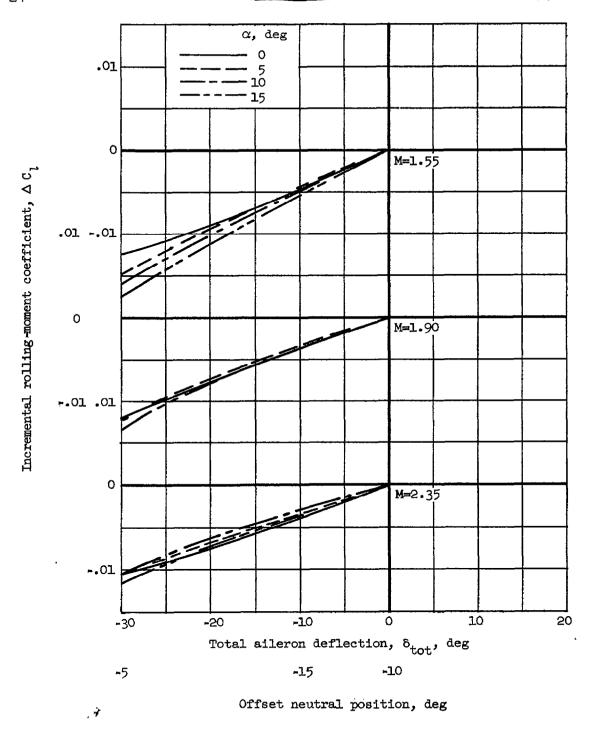


Figure 9.- The variation of incremental rolling-moment coefficient with total aileron deflection for various offset neutral positions.

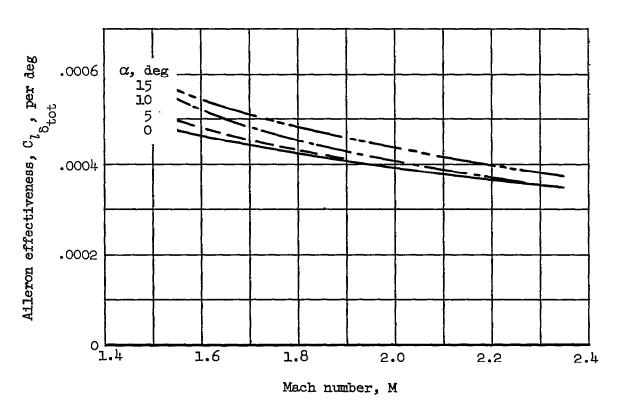


Figure 10.- The effect of Mach number on aileron effectiveness based on differential aileron deflection.

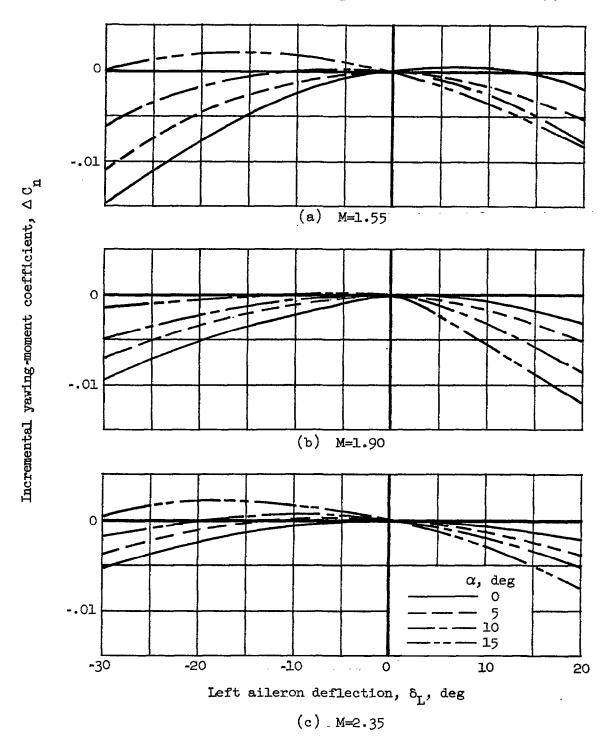


Figure 11.- The incremental yawing-moment coefficient due to left tip aileron deflection; β \approx 0^{O} .

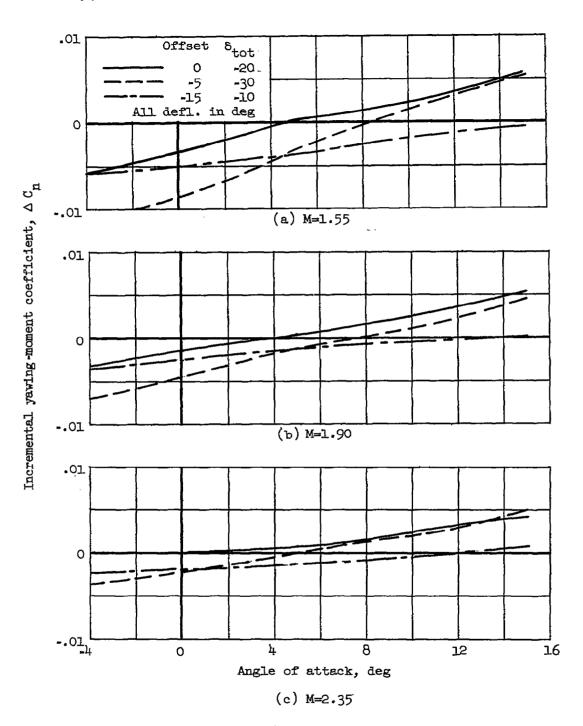


Figure 12.- The incremental yawing-moment coefficient due to total aileron deflection; $\beta~\approx~0^{\circ}$.

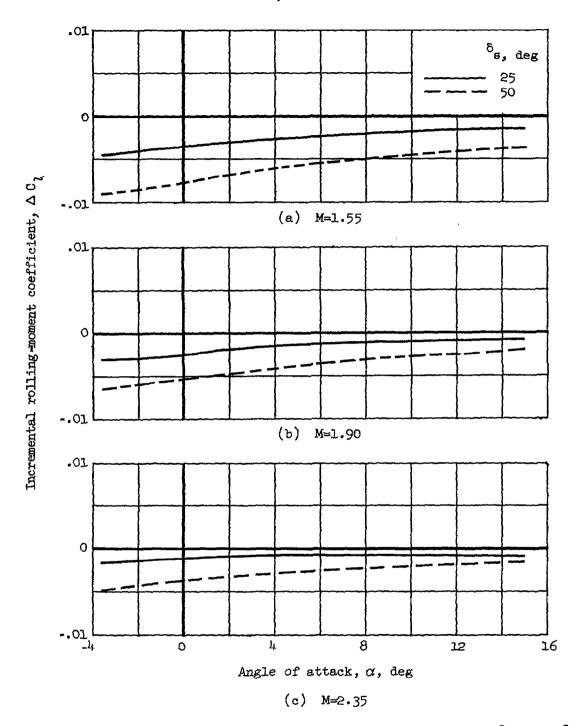


Figure 13.- The incremental rolling-moment coefficient for 25° and 50° deflection of the plain spoiler.

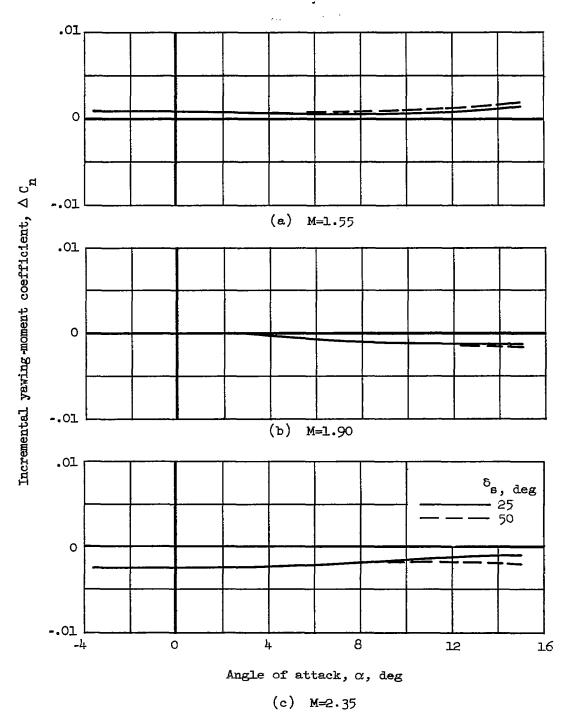


Figure 14.- The incremental yawing-moment coefficient due to 25° and 50° deflection of the plain spoiler; $\beta \approx 0^{\circ}$.

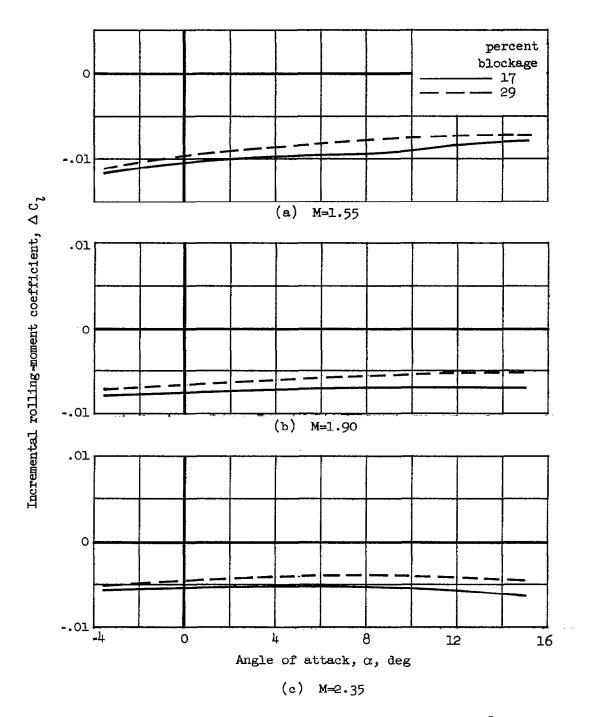


Figure 15.- The incremental rolling-moment coefficient for 25° deflection of the vented spoiler with 17- and 29-percent vent blockage.

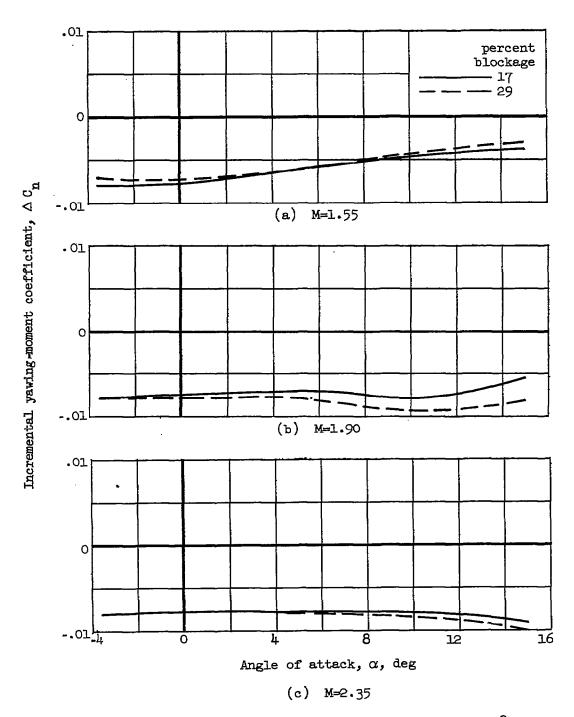
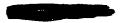



Figure 16.- The incremental yawing-moment coefficient due to 25° deflection of the vented spoiler with 17- and 29-percent vent blockage; $\beta \approx 0^{\circ}$.

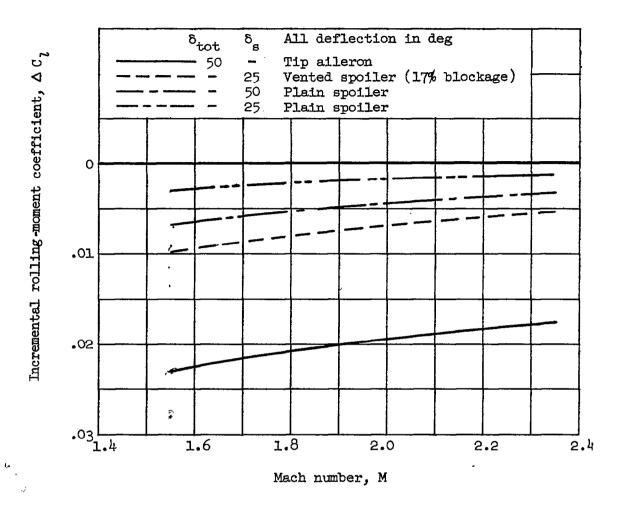


Figure 17.- The effect of Mach number on the incremental rolling-moment coefficient for several lateral control devices; $\alpha = 2^{\circ}$.

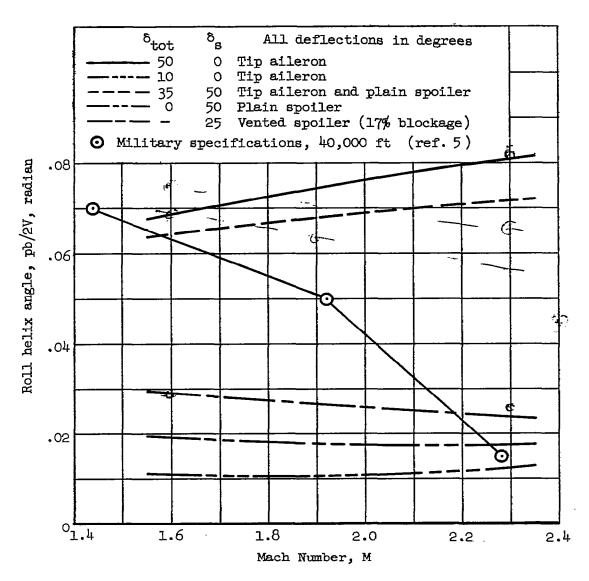


Figure 18.- Roll capability of the various lateral control systems; $\alpha = 2^{\circ}$.

2b = 01

3 1176 01434 9451

...

*

COMPIDENTE

I